Commit 2022-03-03 17:48 0da2d1d9
View on Github →feat(ring_theory/polynomial/eisenstein): add mem_adjoin_of_smul_prime_pow_smul_of_minpoly_is_eiseinstein_at (#12371)
We add mem_adjoin_of_smul_prime_pow_smul_of_minpoly_is_eiseinstein_at
: let K
be the field of fraction of an integrally closed domain R
and let L
be a separable extension of K
, generated by an integral power basis B
such that the minimal polynomial of B.gen
is Eisenstein at p
. Given z : L
integral over R
, if p ^ n • z ∈ adjoin R {B.gen}
, then z ∈ adjoin R {B.gen}
. Together with algebra.discr_mul_is_integral_mem_adjoin
this result often allows to compute the ring of integers of L
.
From flt-regular