Commit 2022-05-28 15:49 1e46532c
View on Github →feat(measure_theory/integral/lebesgue): lintegral_add
holds if 1 function is measurable (#14278)
- for any function
f
there exists a measurable functiong ≤ f
with the same Lebesgue integral; - prove
∫⁻ a, f a + g a ∂μ = ∫⁻ a, f a ∂μ + ∫⁻ a, g a ∂μ
assuming one of the functions is (a.e.-)measurable; splitlintegral_add
into two lemmaslintegral_add_(left|right)
; - prove
∫⁻ a, f a ∂μ + ∫⁻ a, g a ∂μ ≤ ∫⁻ a, f a + g a ∂μ
for anyf
,g
; - prove a version of Markov's inequality for
μ {x | f x + ε ≤ g x}
with possibly non-measurablef
; - prove
f ≤ᵐ[μ] g → ∫⁻ x, f x ∂μ ≠ ∞ → ∫⁻ x, g x ∂μ ≤ ∫⁻ x, f x ∂μ → f =ᵐ[μ] g
for an a.e.-measurable functionf
; - drop one measurability assumption in
lintegral_sub
andlintegral_sub_le
; - add
lintegral_strict_mono_of_ae_le_of_frequently_ae_lt
, a version oflintegral_strict_mono_of_ae_le_of_ae_lt_on
; - drop one measurability assumption in
lintegral_strict_mono_of_ae_le_of_ae_lt_on
,lintegral_strict_mono
, andset_lintegral_strict_mono
; - prove
with_density_add
assuming measurability of one of the functions; replace it withwith_density_add_(left|right)
; - drop measurability assumptions here and there in
mean_inequalities
.