Commit 2022-05-28 15:49 1e46532c
View on Github →feat(measure_theory/integral/lebesgue): lintegral_add holds if 1 function is measurable (#14278)
- for any function
fthere exists a measurable functiong ≤ fwith the same Lebesgue integral; - prove
∫⁻ a, f a + g a ∂μ = ∫⁻ a, f a ∂μ + ∫⁻ a, g a ∂μassuming one of the functions is (a.e.-)measurable; splitlintegral_addinto two lemmaslintegral_add_(left|right); - prove
∫⁻ a, f a ∂μ + ∫⁻ a, g a ∂μ ≤ ∫⁻ a, f a + g a ∂μfor anyf,g; - prove a version of Markov's inequality for
μ {x | f x + ε ≤ g x}with possibly non-measurablef; - prove
f ≤ᵐ[μ] g → ∫⁻ x, f x ∂μ ≠ ∞ → ∫⁻ x, g x ∂μ ≤ ∫⁻ x, f x ∂μ → f =ᵐ[μ] gfor an a.e.-measurable functionf; - drop one measurability assumption in
lintegral_subandlintegral_sub_le; - add
lintegral_strict_mono_of_ae_le_of_frequently_ae_lt, a version oflintegral_strict_mono_of_ae_le_of_ae_lt_on; - drop one measurability assumption in
lintegral_strict_mono_of_ae_le_of_ae_lt_on,lintegral_strict_mono, andset_lintegral_strict_mono; - prove
with_density_addassuming measurability of one of the functions; replace it withwith_density_add_(left|right); - drop measurability assumptions here and there in
mean_inequalities.