Commit 2022-05-28 15:49 1e46532c
View on Github →feat(measure_theory/integral/lebesgue): lintegral_add holds if 1 function is measurable (#14278)
- for any function fthere exists a measurable functiong ≤ fwith the same Lebesgue integral;
- prove ∫⁻ a, f a + g a ∂μ = ∫⁻ a, f a ∂μ + ∫⁻ a, g a ∂μassuming one of the functions is (a.e.-)measurable; splitlintegral_addinto two lemmaslintegral_add_(left|right);
- prove ∫⁻ a, f a ∂μ + ∫⁻ a, g a ∂μ ≤ ∫⁻ a, f a + g a ∂μfor anyf,g;
- prove a version of Markov's inequality for μ {x | f x + ε ≤ g x}with possibly non-measurablef;
- prove f ≤ᵐ[μ] g → ∫⁻ x, f x ∂μ ≠ ∞ → ∫⁻ x, g x ∂μ ≤ ∫⁻ x, f x ∂μ → f =ᵐ[μ] gfor an a.e.-measurable functionf;
- drop one measurability assumption in lintegral_subandlintegral_sub_le;
- add lintegral_strict_mono_of_ae_le_of_frequently_ae_lt, a version oflintegral_strict_mono_of_ae_le_of_ae_lt_on;
- drop one measurability assumption in lintegral_strict_mono_of_ae_le_of_ae_lt_on,lintegral_strict_mono, andset_lintegral_strict_mono;
- prove with_density_addassuming measurability of one of the functions; replace it withwith_density_add_(left|right);
- drop measurability assumptions here and there in mean_inequalities.