Commit 2020-05-12 15:37 34a0c8c5
View on Github →chore(*): unify use of left and right for injectivity lemmas (#2655) This is the evil twin of #2652 using the opposite convention: the name of a lemma stating that a function in two arguments is injective in one of the arguments refers to the argument that changes. Example:
lemma sub_right_inj : a - b = a - c ↔ b = c
See also the Zulip discussion.
This PR renames lemmas following the other convention. The following lemmas were renamed:
algebra/group/basic.lean
:
mul_left_injective
↔mul_right_injective
mul_left_inj
↔mul_right_inj
sub_left_inj
↔sub_right_inj
algebra/goup/units.lean
:mul_left_inj
↔mul_right_inj
divp_right_inj
→divp_left_inj
algebra/group_power.lean
:pow_right_inj
→pow_left_inj
algebra/group_with_zero.lean
:div_right_inj'
→div_left_inj'
mul_right_inj'
→mul_left_inj'
algebra/ring.lean
:domain.mul_right_inj
↔domain.mul_left_inj
data/finsupp.lean
:single_right_inj
→single_left_inj
data/list/basic.lean
:append_inj_left
↔append_inj_right
append_inj_left'
↔append_inj_right'
append_left_inj
↔append_right_inj
prefix_append_left_inj
→prefix_append_right_inj
data/nat/basic.lean
:mul_left_inj
↔mul_right_inj
data/real/ennreal.lean
:add_left_inj
↔add_right_inj
sub_left_inj
→sub_right_inj
set_theory/ordinal.lean
:mul_left_inj
→mul_right_inj