Commit 2020-05-12 15:37 34a0c8c5
View on Github →chore(*): unify use of left and right for injectivity lemmas (#2655) This is the evil twin of #2652 using the opposite convention: the name of a lemma stating that a function in two arguments is injective in one of the arguments refers to the argument that changes. Example:
lemma sub_right_inj : a - b = a - c ↔ b = c
See also the Zulip discussion.
This PR renames lemmas following the other convention. The following lemmas were renamed:
algebra/group/basic.lean:
- mul_left_injective↔- mul_right_injective
- mul_left_inj↔- mul_right_inj
- sub_left_inj↔- sub_right_inj- algebra/goup/units.lean:
- mul_left_inj↔- mul_right_inj
- divp_right_inj→- divp_left_inj- algebra/group_power.lean:
- pow_right_inj→- pow_left_inj- algebra/group_with_zero.lean:
- div_right_inj'→- div_left_inj'
- mul_right_inj'→- mul_left_inj'- algebra/ring.lean:
- domain.mul_right_inj↔- domain.mul_left_inj- data/finsupp.lean:
- single_right_inj→- single_left_inj- data/list/basic.lean:
- append_inj_left↔- append_inj_right
- append_inj_left'↔- append_inj_right'
- append_left_inj↔- append_right_inj
- prefix_append_left_inj→- prefix_append_right_inj- data/nat/basic.lean:
- mul_left_inj↔- mul_right_inj- data/real/ennreal.lean:
- add_left_inj↔- add_right_inj
- sub_left_inj→- sub_right_inj- set_theory/ordinal.lean:
- mul_left_inj→- mul_right_inj