Commit 2020-05-12 15:37 34a0c8c5
View on Github →chore(*): unify use of left and right for injectivity lemmas (#2655) This is the evil twin of #2652 using the opposite convention: the name of a lemma stating that a function in two arguments is injective in one of the arguments refers to the argument that changes. Example:
lemma sub_right_inj : a - b = a - c ↔ b = c
See also the Zulip discussion.
This PR renames lemmas following the other convention. The following lemmas were renamed:
algebra/group/basic.lean:
mul_left_injective↔mul_right_injectivemul_left_inj↔mul_right_injsub_left_inj↔sub_right_injalgebra/goup/units.lean:mul_left_inj↔mul_right_injdivp_right_inj→divp_left_injalgebra/group_power.lean:pow_right_inj→pow_left_injalgebra/group_with_zero.lean:div_right_inj'→div_left_inj'mul_right_inj'→mul_left_inj'algebra/ring.lean:domain.mul_right_inj↔domain.mul_left_injdata/finsupp.lean:single_right_inj→single_left_injdata/list/basic.lean:append_inj_left↔append_inj_rightappend_inj_left'↔append_inj_right'append_left_inj↔append_right_injprefix_append_left_inj→prefix_append_right_injdata/nat/basic.lean:mul_left_inj↔mul_right_injdata/real/ennreal.lean:add_left_inj↔add_right_injsub_left_inj→sub_right_injset_theory/ordinal.lean:mul_left_inj→mul_right_inj