Commit 2021-03-10 02:23 4e370b5d
View on Github →feat(topology): shrinking lemma (#6478)
Add a few versions of the shrinking lemma:
exists_subset_Union_closure_subsetandexists_Union_eq_closure_subset: shrinking lemma for general normal spaces;exists_subset_Union_ball_radius_lt,exists_Union_ball_eq_radius_lt,exists_subset_Union_ball_radius_pos_lt,exists_Union_ball_eq_radius_pos_lt: shrinking lemma for coverings by open balls in a proper metric space;exists_locally_finite_subset_Union_ball_radius_lt,exists_locally_finite_Union_eq_ball_radius_lt: given a positive functionR : X → ℝ, finds a locally finite covering by open ballsball (c i) (r' i),r' i < Rand a subcovering by balls of strictly smaller radiusball (c i) (r i),0 < r i < r' i.
Other API changes
- add
@[simp]toset.compl_subset_compl; - add
is_closed_bInterandlocally_finite.point_finite; - add
metric.closed_ball_subset_closed_ball,metric.uniformity_basis_dist_lt,exists_pos_lt_subset_ball, andexists_lt_subset_ball; - generalize
refinement_of_locally_compact_sigma_compact_of_nhds_basistorefinement_of_locally_compact_sigma_compact_of_nhds_basis_set, replace arguments(s : X → set X) (hs : ∀ x, s x ∈ 𝓝 x)with a hint to usefilter.has_basis.restrict_subsetif needed. - make
sandtarguments ofnormal_separationimplicit; - add
normal_exists_closure_subset; - turn
sigma_compact_space_of_locally_compact_second_countableinto aninstance.