Commit 2021-03-10 02:23 4e370b5d
View on Github →feat(topology): shrinking lemma (#6478)
Add a few versions of the shrinking lemma:
exists_subset_Union_closure_subset
andexists_Union_eq_closure_subset
: shrinking lemma for general normal spaces;exists_subset_Union_ball_radius_lt
,exists_Union_ball_eq_radius_lt
,exists_subset_Union_ball_radius_pos_lt
,exists_Union_ball_eq_radius_pos_lt
: shrinking lemma for coverings by open balls in a proper metric space;exists_locally_finite_subset_Union_ball_radius_lt
,exists_locally_finite_Union_eq_ball_radius_lt
: given a positive functionR : X → ℝ
, finds a locally finite covering by open ballsball (c i) (r' i)
,r' i < R
and a subcovering by balls of strictly smaller radiusball (c i) (r i)
,0 < r i < r' i
.
Other API changes
- add
@[simp]
toset.compl_subset_compl
; - add
is_closed_bInter
andlocally_finite.point_finite
; - add
metric.closed_ball_subset_closed_ball
,metric.uniformity_basis_dist_lt
,exists_pos_lt_subset_ball
, andexists_lt_subset_ball
; - generalize
refinement_of_locally_compact_sigma_compact_of_nhds_basis
torefinement_of_locally_compact_sigma_compact_of_nhds_basis_set
, replace arguments(s : X → set X) (hs : ∀ x, s x ∈ 𝓝 x)
with a hint to usefilter.has_basis.restrict_subset
if needed. - make
s
andt
arguments ofnormal_separation
implicit; - add
normal_exists_closure_subset
; - turn
sigma_compact_space_of_locally_compact_second_countable
into aninstance
.