Commit 2019-12-12 09:05 69e861e9
View on Github →feat(measure_theory/bochner_integration): connecting the Bochner integral with the integral on ennreal
-valued functions (#1790)
- shorter proof
- feat(measure_theory/bochner_integration): connecting the Bochner integral with the integral on
ennreal
This PR proves that∫ f = ∫ f⁺ - ∫ f⁻
, with the first integral sign being the Bochner integral of a real-valued functionf : α → ℝ
, and second and third integral sign being the integral onennreal
-valued functions. Seeintegral_eq_lintegral_max_sub_lintegral_min
. I feel that most of the basic properties of the Bochner integral are proved. Please let me know if you think something else is needed. - various things :
- add guides for typeclass inference;
- add
norm_cast
tags; - prove some corollaries;
- add doc strings;
- other fixes
- Update bochner_integration.lean
- add some doc strings
- Fix doc strings
- Update bochner_integration.lean
- Update bochner_integration.lean
- fix doc strings
- Update bochner_integration.lean
- Use dot notation
- use dot notation
- Update Meas.lean