Mathlib Changelog
v3
Changelog
About
Github
Mathlib v3 is deprecated.
Go to Mathlib v4
Commit
2020-11-18 09:31
7cc6b53f
View on Github →
feat(category_theory/sites): sheaves on a grothendieck topology (
#4608
) Broken off from
#4577
.
Estimated changes
Modified
docs/references.bib
Modified
src/category_theory/limits/shapes/types.lean
added
theorem
category_theory.limits.types.type_equalizer_iff_unique
Created
src/category_theory/sites/sheaf.lean
added
def
category_theory.equalizer.first_obj
added
def
category_theory.equalizer.first_obj_eq_family
added
def
category_theory.equalizer.fork_map
added
theorem
category_theory.equalizer.presieve.compatible_iff
added
def
category_theory.equalizer.presieve.first_map
added
def
category_theory.equalizer.presieve.second_map
added
def
category_theory.equalizer.presieve.second_obj
added
theorem
category_theory.equalizer.presieve.sheaf_condition
added
theorem
category_theory.equalizer.presieve.w
added
theorem
category_theory.equalizer.sieve.compatible_iff
added
theorem
category_theory.equalizer.sieve.equalizer_sheaf_condition
added
def
category_theory.equalizer.sieve.first_map
added
def
category_theory.equalizer.sieve.second_map
added
def
category_theory.equalizer.sieve.second_obj
added
theorem
category_theory.equalizer.sieve.w
added
theorem
category_theory.presieve.compatible_iff_sieve_compatible
added
theorem
category_theory.presieve.extend_agrees
added
theorem
category_theory.presieve.extend_restrict
added
theorem
category_theory.presieve.extension_iff_amalgamation
added
theorem
category_theory.presieve.family_of_elements.compatible.restrict
added
theorem
category_theory.presieve.family_of_elements.compatible.sieve_extend
added
theorem
category_theory.presieve.family_of_elements.compatible.to_sieve_compatible
added
def
category_theory.presieve.family_of_elements.compatible
added
def
category_theory.presieve.family_of_elements.is_amalgamation
added
def
category_theory.presieve.family_of_elements.pullback_compatible
added
def
category_theory.presieve.family_of_elements.restrict
added
def
category_theory.presieve.family_of_elements.sieve_compatible
added
def
category_theory.presieve.family_of_elements
added
theorem
category_theory.presieve.is_amalgamation_restrict
added
theorem
category_theory.presieve.is_amalgamation_sieve_extend
added
theorem
category_theory.presieve.is_compatible_of_exists_amalgamation
added
def
category_theory.presieve.is_separated
added
theorem
category_theory.presieve.is_separated_for.ext
added
theorem
category_theory.presieve.is_separated_for.is_sheaf_for
added
def
category_theory.presieve.is_separated_for
added
theorem
category_theory.presieve.is_separated_for_and_exists_is_amalgamation_iff_sheaf_for
added
theorem
category_theory.presieve.is_separated_for_iff_generate
added
theorem
category_theory.presieve.is_separated_for_top
added
def
category_theory.presieve.is_sheaf
added
theorem
category_theory.presieve.is_sheaf_for.is_amalgamation
added
theorem
category_theory.presieve.is_sheaf_for.is_separated_for
added
theorem
category_theory.presieve.is_sheaf_for.valid_glue
added
def
category_theory.presieve.is_sheaf_for
added
theorem
category_theory.presieve.is_sheaf_for_coarser_topology
added
theorem
category_theory.presieve.is_sheaf_for_iff_generate
added
theorem
category_theory.presieve.is_sheaf_for_iso
added
theorem
category_theory.presieve.is_sheaf_for_singleton_iso
added
theorem
category_theory.presieve.is_sheaf_for_subsieve
added
theorem
category_theory.presieve.is_sheaf_for_subsieve_aux
added
theorem
category_theory.presieve.is_sheaf_for_top_sieve
added
theorem
category_theory.presieve.is_sheaf_iso
added
theorem
category_theory.presieve.is_sheaf_pretopology
added
theorem
category_theory.presieve.is_sheaf_yoneda
added
def
category_theory.presieve.nat_trans_equiv_compatible_family
added
theorem
category_theory.presieve.pullback_compatible_iff
added
theorem
category_theory.presieve.restrict_extend
added
theorem
category_theory.presieve.restrict_inj
added
theorem
category_theory.presieve.separated_of_sheaf
added
theorem
category_theory.presieve.yoneda_condition_iff_sheaf_condition
added
def
category_theory.presieve.yoneda_sheaf_condition