Commit 2021-09-29 04:03 861d3bc4
View on Github →chore(order/preorder_hom): more homs, golf a few proofs (#9256)
New preorder_homs
preorder_hom.curry: an order isomorphism betweenα × β →ₘ γandα →ₘ β →ₘ γ;preorder_hom.compₘ: a fully bundled version ofpreorder_hom.comp;preorder_hom.prodₘ: a fully bundled version ofpreorder_hom.prod;preorder_hom.prod_iso: Order isomorphism between the space of monotone maps toβ × γand the product of the spaces +of monotone maps toβandγ;preorder_hom.pi: construct a bundled monotone mapα →ₘ Π i, π ifrom a family of monotone maps +f i : α →ₘ π i;preorder_hom.pi_iso: same thing, as anorder_iso;preorder_hom.dual: interpretf : α →ₘ βasorder_dual α →ₘ order_dual β;preorder_hom.dual_iso: same as anorder_iso(with one moreorder_dualto get a monotone map, not an antitone map);
Renamed/moved preorder_homs
The following preorder_homs were renamed and/or moved from
order.omega_complete_partial_order to order.preorder_hom.
preorder_hom.const: moved, bundle asβ →ₘ α →ₘ β;preorder_hom.prod.diag:preorder_hom.diag;preorder_hom.prod.map:preorder_hom.prod_map;preorder_hom.prod.fst:preorder_hom.fst;preorder_hom.prod.snd:preorder_hom.snd;preorder_hom.prod.zip:preorder_hom.prod;pi.monotone_apply:pi.eval_preorder_hom;preorder_hom.monotone_apply:preorder_hom.apply;preorder_hom.to_fun_hom: moved.
Other changes
- add an instance
can_lift (α → β) (α →ₘ β);
- rename
omega_complete_partial_order.continuous.to_monotonetoomega_complete_partial_order.continuous'.to_monotoneto enable dot notation, same withomega_complete_partial_order.continuous.to_bundled;
- use
order_dualto get some proofs; - golf some proofs;
- redefine
has_Inf.Infandhas_Sup.Supusinginfi/supr; - generalize some
monolemmas; - use notation
→ₘ.