Commit 2021-09-29 04:03 861d3bc4
View on Github →chore(order/preorder_hom): more homs, golf a few proofs (#9256)
New preorder_homs
- preorder_hom.curry: an order isomorphism between- α × β →ₘ γand- α →ₘ β →ₘ γ;
- preorder_hom.compₘ: a fully bundled version of- preorder_hom.comp;
- preorder_hom.prodₘ: a fully bundled version of- preorder_hom.prod;
- preorder_hom.prod_iso: Order isomorphism between the space of monotone maps to- β × γand the product of the spaces +of monotone maps to- βand- γ;
- preorder_hom.pi: construct a bundled monotone map- α →ₘ Π i, π ifrom a family of monotone maps +- f i : α →ₘ π i;
- preorder_hom.pi_iso: same thing, as an- order_iso;
- preorder_hom.dual: interpret- f : α →ₘ βas- order_dual α →ₘ order_dual β;
- preorder_hom.dual_iso: same as an- order_iso(with one more- order_dualto get a monotone map, not an antitone map);
Renamed/moved preorder_homs
The following preorder_homs were renamed and/or moved from
order.omega_complete_partial_order to order.preorder_hom.
- preorder_hom.const: moved, bundle as- β →ₘ α →ₘ β;
- preorder_hom.prod.diag:- preorder_hom.diag;
- preorder_hom.prod.map:- preorder_hom.prod_map;
- preorder_hom.prod.fst:- preorder_hom.fst;
- preorder_hom.prod.snd:- preorder_hom.snd;
- preorder_hom.prod.zip:- preorder_hom.prod;
- pi.monotone_apply:- pi.eval_preorder_hom;
- preorder_hom.monotone_apply:- preorder_hom.apply;
- preorder_hom.to_fun_hom: moved.
Other changes
- add an instance can_lift (α → β) (α →ₘ β);
- rename omega_complete_partial_order.continuous.to_monotonetoomega_complete_partial_order.continuous'.to_monotoneto enable dot notation, same withomega_complete_partial_order.continuous.to_bundled;
- use order_dualto get some proofs;
- golf some proofs;
- redefine has_Inf.Infandhas_Sup.Supusinginfi/supr;
- generalize some monolemmas;
- use notation →ₘ.