Commit 2021-09-29 04:03 861d3bc4
View on Github →chore(order/preorder_hom): more homs, golf a few proofs (#9256)
New preorder_hom
s
preorder_hom.curry
: an order isomorphism betweenα × β →ₘ γ
andα →ₘ β →ₘ γ
;preorder_hom.compₘ
: a fully bundled version ofpreorder_hom.comp
;preorder_hom.prodₘ
: a fully bundled version ofpreorder_hom.prod
;preorder_hom.prod_iso
: Order isomorphism between the space of monotone maps toβ × γ
and the product of the spaces +of monotone maps toβ
andγ
;preorder_hom.pi
: construct a bundled monotone mapα →ₘ Π i, π i
from a family of monotone maps +f i : α →ₘ π i
;preorder_hom.pi_iso
: same thing, as anorder_iso
;preorder_hom.dual
: interpretf : α →ₘ β
asorder_dual α →ₘ order_dual β
;preorder_hom.dual_iso
: same as anorder_iso
(with one moreorder_dual
to get a monotone map, not an antitone map);
Renamed/moved preorder_hom
s
The following preorder_hom
s were renamed and/or moved from
order.omega_complete_partial_order
to order.preorder_hom
.
preorder_hom.const
: moved, bundle asβ →ₘ α →ₘ β
;preorder_hom.prod.diag
:preorder_hom.diag
;preorder_hom.prod.map
:preorder_hom.prod_map
;preorder_hom.prod.fst
:preorder_hom.fst
;preorder_hom.prod.snd
:preorder_hom.snd
;preorder_hom.prod.zip
:preorder_hom.prod
;pi.monotone_apply
:pi.eval_preorder_hom
;preorder_hom.monotone_apply
:preorder_hom.apply
;preorder_hom.to_fun_hom
: moved.
Other changes
- add an instance
can_lift (α → β) (α →ₘ β)
;
- rename
omega_complete_partial_order.continuous.to_monotone
toomega_complete_partial_order.continuous'.to_monotone
to enable dot notation, same withomega_complete_partial_order.continuous.to_bundled
;
- use
order_dual
to get some proofs; - golf some proofs;
- redefine
has_Inf.Inf
andhas_Sup.Sup
usinginfi
/supr
; - generalize some
mono
lemmas; - use notation
→ₘ
.