Commit 2025-10-27 20:01 0f4d3c56
View on Github →feat(Order): lemmas about iSupIndep (#29791)
- generalize
Finset.SupIndep"bind" operations fromDistribLatticetoIsModularLattice - new lemma
iSupIndep.iInf - more characterizations of
iSupIndepon submodules:iSupIndep_iff_finset_sum_eq_zero_imp_eq_zeroiSupIndep_iff_finset_sum_eq_imp_eq
- add
@[simp]and@[grind]attributes which were helpful for these proofs Original motivation was to have the following fact:
theorem iSupIndep_iInf_genEigenspace [NoZeroSMulDivisors R M] {α : Type*} (f : α → End R M)
(k : ℕ∞) : iSupIndep fun μ : α → R ↦ ⨅ a : α, ((f a).genEigenspace (μ a)) k :=
.iInf (f · |>.genEigenspace · k) (f · |>.independent_genEigenspace k)