Commit 2024-11-28 12:19 1109970b
View on Github →feat: IntermediateField.rank_sup_le (#19527)
New results:
In Mathlib/RingTheory/AlgebraicIndependent.lean:
IsTranscendenceBasis.lift_(cardinalMk|rank)_eq_max_lift: ifxis a transcendence basis ofE/Fand is not empty, then[E:F] = #E = max(#F, #x, ℵ₀)Algebra.Transcendental.rank_eq_cardinalMk: ifE/Fis transcendental, then[E:F] = #E. (a corollary of above result)IntermediateField.rank_sup_le: ifAandBare intermediate fields ofE/F, then[AB:F] ≤ [A:F] * [B:F](an application of above result) InMathlib/RingTheory/Algebraic.lean:[Algebra.]Transcendental.infinite: a ring has infinitely many elements if it has a transcendental element. InMathlib/FieldTheory/MvRatFunc/Rank.lean(new file):MvRatFunc.rank_eq_max_lift: rank of multivariate rational function field. Note that we don't haveMvRatFuncyet, so the statement usesFractionRing (MvPolynomial ...). Eventually the theory ofMvRatFuncshould go this directory. Also move the resultsAlgebra.IsAlgebraic.[lift_]cardinalMk_le_XXXfromMathlib/FieldTheory/IsAlgClosed/Classification.leanto a new fileMathlib/RingTheory/Algebraic/Cardinality.leanwhich has fewer imports.