Commit 2024-02-23 11:29 1afb2fb3
View on Github →feat(GroupTheory/Exponent): lemmas around Monoid.exponent and Subgroup/Submonoid (#10598)
Proves some helpful properties of Monoid.exponent
on Submonoid G
and Subgroup G
:
- the exponent of a group is equal to 1 iff the monoid is trivial (previously only the reverse implication was proven)
- the exponent of
G
divides the exponent ofH
if there exists a multiplication-preserving injection fromG
toH
Monoid.exponent G = Monoid.exponent H
ifG ≃* H
Monoid.exponent ⊤ = Monoid.exponent G
g ^ Monoid.exponent H = 1
ifg ∈ H
- generalizes
one_lt_exponent
toLeftCancelMonoid