Commit 2025-07-23 08:49 1e28d511
View on Github →feat(GroupTheory/SpecificGroups/Alternating/KleinFour): the Klein Four subgroup of alternatingGroup on 4 letters (#27057)
Let α be a finite type.
alternatingGroup.center_eq_bot: when4 ≤ Nat.card α, then center ofalternatingGroup αis trivial. We now assume thatNat.card α = 4.alternatingGroup.kleinFour: the subgroup ofalternatingGroup αgenerated by permutations of cycle type (2, 2).alternatingGroup.kleinFour_isKleinFour:alternatingGroup.kleinFour αsatisfiesIsKleinFour. (When4 < Nat.card α, it is equal to⊤, whenNat.card α < 4, it is trivial.)alternatingGroup.two_sylow_eq_kleinFour_of_four: All2-sylow subgroups ofalternatingGroup αare equal tokleinFour α.alternatingGroup.characteristic_kleinFour: the subgroupalternatingGroup.kleinFour αis characteristic.alternatingGroup.normal_kleinFour: the subgroupalternatingGroup.kleinFour αis normal.alternatingGroup.kleinFour_eq_commutator: the subgroupalternatingGroup.kleinFour αis the commutator subgroup ofalternatingGroup α. (When4 < Nat.card α, the commutator subgroup ofalternatingGroup αis equal to⊤; whenNat.card α < 3, it is trivial.)
Remark on implementation
We start from kleinFour α as given by its definition.
We first prove that it is equal to any 2-sylow subgroup: the elements of such a sylow subgroup S have order a power of 2, and this implies that their cycle type is () or (2,2).
Since there are exactly 4 elements of that cycle type, we conclude that kleinFour α = S.
Since all 2-sylow subgroups are conjugate, we conclude that there is only one 2-sylow subgroup and that it is normal, and then characteristic.
TODO :
Prove alternatingGroup.kleinFour α = commutator (alternatingGroup α) without any assumption on Nat.card α.