Commit 2023-11-28 15:55 60b5e237
View on Github →feat(FieldTheory/SeparableDegree): basic definition of separable degree of field extension (#8117) Main changes:
- rename current
Mathlib/FieldTheory/SeparableDegreetoMathlib/RingTheory/Polynomial/SeparableDegreeand create newMathlib/FieldTheory/SeparableDegreeMain definitions Emb F E: the type ofF-algebra homomorphisms fromEto the algebraic closure ofE.sepDegree F E: the separable degree of an algebraic extensionE / Fof fields, defined to be the cardinal ofF-algebra homomorphisms fromEto the algebraic closure ofE. (Mathematically, it should be the algebraic closure ofF, but in order to make the type compatible withModule.rank F E, we use the algebraic closure ofE.) Note that ifE / Fis not algebraic, then this definition makes no mathematical sense.finSepDegree F E: the separable degree ofE / Fas a natural number, which is zero ifsepDegree F Eis not finite. Main resultsembEquivOfEquiv,sepDegree_eq_of_equiv,finSepDegree_eq_of_equiv: a random isomorphism betweenEmb F EandEmb F E'whenEandE'are isomorphic asF-algebras. In particular, they have the same cardinality (sosepDegreeandfinSepDegreeare equal).embEquivOfAdjoinSplits',sepDegree_eq_of_adjoin_splits',finSepDegree_eq_of_adjoin_splits': a random isomorphism betweenEmb F EandE →ₐ[F] KifE = F(S)such that every elementsofSis integral (= algebraic) overFand whose minimal polynomial splits inK. In particular, they have the same cardinality.embEquivOfIsAlgClosed,sepDegree_eq_of_isAlgClosed,finSepDegree_eq_of_isAlgClosed: a random isomorphism betweenEmb F EandE →ₐ[F] KwhenE / Fis algebraic andK / Fis algebraically closed. In particular, they have the same cardinality.embProdEmbOfIsAlgebraic,lift_sepDegree_mul_lift_sepDegree_of_isAlgebraic,sepDegree_mul_sepDegree_of_isAlgebraic,finSepDegree_mul_finSepDegree_of_isAlgebraic: ifK / E / Fis a field extension tower, such thatK / Eis algebraic, then there is a non-canonical isomorphism(Emb F E) × (Emb E K) ≃ (Emb F K). In particular, the separable degree satisfies the tower law:[E:F]_s [K:E]_s = [K:F]_s.