Commit 2024-07-18 12:08 65d6572c
View on Github →refactor(AlgebraicGeometry): Rework Morphisms/Basic
to phase away from TFAEs (#14430)
Previously the contents of Morphism/Baisic
were all implementation detail that needed to be copied over to each new morphism class. In this PR we clean up the file and promote it into a proper interface of the API. We also phase away from TFAEs in favor of easier to use iff lemmas. We introduce the following two interfaces:
IsLocalAtTarget
AlgebraicGeometry.IsLocalAtTarget
: We say thatIsLocalAtTarget P
forP : MorphismProperty Scheme
if
P
respects isomorphisms.- If
P
holds forf : X ⟶ Y
, thenP
holds forf ∣_ U
for any openU
ofY
. - If
P
holds forf ∣_ U
for an open coverU
ofY
, thenP
holds forf
. For a morphism propertyP
local at the target andf : X ⟶ Y
, we provide these API lemmas:
AlgebraicGeometry.IsLocalAtTarget.of_isPullback
:P
is preserved under pullback along open immersions.AlgebraicGeometry.IsLocalAtTarget.restrict
:P f → P (f ∣_ U)
for an openU
ofY
.AlgebraicGeometry.IsLocalAtTarget.iff_of_iSup_eq_top
:P f ↔ ∀ i, P (f ∣_ U i)
for a familyU i
of open sets coveringY
.AlgebraicGeometry.IsLocalAtTarget.iff_of_openCover
:P f ↔ ∀ i, P (𝒰.pullbackHom f i)
for𝒰 : Y.openCover
.
HasAffineProperty
AlgebraicGeometry.HasAffineProperty
:HasAffineProperty P Q
is a type class asserting thatP
is local at the target, and over affine schemes, it is equivalent toQ : AffineTargetMorphismProperty
. ForHasAffineProperty P Q
andf : X ⟶ Y
, we provide these API lemmas:AlgebraicGeometry.HasAffineProperty.of_isPullback
:P
is preserved under pullback along open immersions from affine schemes.AlgebraicGeometry.HasAffineProperty.restrict
:P f → Q (f ∣_ U)
for affineU
ofY
.AlgebraicGeometry.HasAffineProperty.iff_of_iSup_eq_top
:P f ↔ ∀ i, Q (f ∣_ U i)
for a familyU i
of affine open sets coveringY
.AlgebraicGeometry.HasAffineProperty.iff_of_openCover
:P f ↔ ∀ i, P (𝒰.pullbackHom f i)
for affine open covers𝒰
ofY
.AlgebraicGeometry.HasAffineProperty.stableUnderBaseChange_mk
: IfQ
is stable under affine base change, thenP
is stable under arbitrary base change.