Commit 2024-07-18 12:08 65d6572c
View on Github →refactor(AlgebraicGeometry): Rework Morphisms/Basic to phase away from TFAEs (#14430)
Previously the contents of Morphism/Baisic were all implementation detail that needed to be copied over to each new morphism class. In this PR we clean up the file and promote it into a proper interface of the API. We also phase away from TFAEs in favor of easier to use iff lemmas. We introduce the following two interfaces:
IsLocalAtTarget
AlgebraicGeometry.IsLocalAtTarget: We say thatIsLocalAtTarget PforP : MorphismProperty Schemeif
Prespects isomorphisms.- If
Pholds forf : X ⟶ Y, thenPholds forf ∣_ Ufor any openUofY. - If
Pholds forf ∣_ Ufor an open coverUofY, thenPholds forf. For a morphism propertyPlocal at the target andf : X ⟶ Y, we provide these API lemmas:
AlgebraicGeometry.IsLocalAtTarget.of_isPullback:Pis preserved under pullback along open immersions.AlgebraicGeometry.IsLocalAtTarget.restrict:P f → P (f ∣_ U)for an openUofY.AlgebraicGeometry.IsLocalAtTarget.iff_of_iSup_eq_top:P f ↔ ∀ i, P (f ∣_ U i)for a familyU iof open sets coveringY.AlgebraicGeometry.IsLocalAtTarget.iff_of_openCover:P f ↔ ∀ i, P (𝒰.pullbackHom f i)for𝒰 : Y.openCover.
HasAffineProperty
AlgebraicGeometry.HasAffineProperty:HasAffineProperty P Qis a type class asserting thatPis local at the target, and over affine schemes, it is equivalent toQ : AffineTargetMorphismProperty. ForHasAffineProperty P Qandf : X ⟶ Y, we provide these API lemmas:AlgebraicGeometry.HasAffineProperty.of_isPullback:Pis preserved under pullback along open immersions from affine schemes.AlgebraicGeometry.HasAffineProperty.restrict:P f → Q (f ∣_ U)for affineUofY.AlgebraicGeometry.HasAffineProperty.iff_of_iSup_eq_top:P f ↔ ∀ i, Q (f ∣_ U i)for a familyU iof affine open sets coveringY.AlgebraicGeometry.HasAffineProperty.iff_of_openCover:P f ↔ ∀ i, P (𝒰.pullbackHom f i)for affine open covers𝒰ofY.AlgebraicGeometry.HasAffineProperty.stableUnderBaseChange_mk: IfQis stable under affine base change, thenPis stable under arbitrary base change.