Commit 2025-07-23 17:08 68bc12ad
View on Github →feat(RepresentationTheory/Homological): (co)(res/inf) natural transformations on group (co)homology (#27393)
Given a group homomorphism f : G →* H
, we define
groupCohomology.resNatTrans k f
: restriction natural transformation between the functors sendingA : Rep k H
toHⁿ(H, A)
and toHⁿ(G, Res(f)(A))
.groupHomology.coresNatTrans k f
: corestriction natural transformation between the functors sendingA : Rep k H
toHₙ(G, Res(f)(A))
and toHₙ(H, A)
. Given a normal subgroupS ≤ G
, we definegroupCohomology.infNatTrans k S
: inflation natural transformation between the functors sendingA : Rep k G
toHⁿ(G ⧸ S, A^S)
and toHⁿ(G, A)
.groupHomology.coinfNatTrans k S
: coinflation natural transformation between the functors sending sendingA : Rep k G
toHₙ(G, A)
and toHₙ(G ⧸ S, A_S)
.