Commit 2025-07-23 17:08 68bc12ad
View on Github →feat(RepresentationTheory/Homological): (co)(res/inf) natural transformations on group (co)homology (#27393)
Given a group homomorphism f : G →* H, we define
groupCohomology.resNatTrans k f: restriction natural transformation between the functors sendingA : Rep k HtoHⁿ(H, A)and toHⁿ(G, Res(f)(A)).groupHomology.coresNatTrans k f: corestriction natural transformation between the functors sendingA : Rep k HtoHₙ(G, Res(f)(A))and toHₙ(H, A). Given a normal subgroupS ≤ G, we definegroupCohomology.infNatTrans k S: inflation natural transformation between the functors sendingA : Rep k GtoHⁿ(G ⧸ S, A^S)and toHⁿ(G, A).groupHomology.coinfNatTrans k S: coinflation natural transformation between the functors sending sendingA : Rep k GtoHₙ(G, A)and toHₙ(G ⧸ S, A_S).