Commit 2024-02-05 11:50 6d578c58
View on Github →feat: tensor algebra of free module over integral domain is a domain (#9890) Provide instances
Nontrivial (TensorAlgebra R M)
whenM
is a module over a nontrivial semiringR
NoZeroDivisors (FreeAlgebra R X)
whenR
is a commutative semiring with no zero-divisors andX
any typeIsDomain (FreeAlgebra R X)
whenR
is an integral domain andX
is any typeTwoUniqueProds (FreeMonoid X)
whereX
is any type (this providesNoZeroDivisors (MonoidAlgebra R (FreeMonoid X))
whenR
is a semiring andX
any type, viaTwoUniqueProds.toUniqueProds
andMonoidAlgebra.instNoZeroDivisorsOfUniqueProds
)NoZeroDivisors (TensorAlgebra R M)
whenM
is a free module over a commutative semiringR
with no zero-divisorsIsDomain (TensorAlgebra R M)
whenM
is a free module over an integral domainR
In Algebra.Group.UniqueProds:- Rename
UniqueProds.mulHom_image_of_injective
toUniqueProds.of_injective_mulHom
. - New lemmas
UniqueMul.of_mulHom_image
,UniqueProds.of_mulHom
,TwoUniqueProds.of_mulHom
show the relevant property holds in the domain of a multiplicative homomorphism if it holds in the codomain, under a certain hypothesis on the homomorphism.