Commit 2024-02-05 11:50 6d578c58
View on Github →feat: tensor algebra of free module over integral domain is a domain (#9890) Provide instances
Nontrivial (TensorAlgebra R M)whenMis a module over a nontrivial semiringRNoZeroDivisors (FreeAlgebra R X)whenRis a commutative semiring with no zero-divisors andXany typeIsDomain (FreeAlgebra R X)whenRis an integral domain andXis any typeTwoUniqueProds (FreeMonoid X)whereXis any type (this providesNoZeroDivisors (MonoidAlgebra R (FreeMonoid X))whenRis a semiring andXany type, viaTwoUniqueProds.toUniqueProdsandMonoidAlgebra.instNoZeroDivisorsOfUniqueProds)NoZeroDivisors (TensorAlgebra R M)whenMis a free module over a commutative semiringRwith no zero-divisorsIsDomain (TensorAlgebra R M)whenMis a free module over an integral domainRIn Algebra.Group.UniqueProds:- Rename
UniqueProds.mulHom_image_of_injectivetoUniqueProds.of_injective_mulHom. - New lemmas
UniqueMul.of_mulHom_image,UniqueProds.of_mulHom,TwoUniqueProds.of_mulHomshow the relevant property holds in the domain of a multiplicative homomorphism if it holds in the codomain, under a certain hypothesis on the homomorphism.