Commit 2023-11-13 07:42 771e087d
View on Github →chore: Generalise lemmas from finite groups to torsion elements (#8342)
Many lemmas in GroupTheory.OrderOfElement were stated for elements of finite groups even though they work more generally for torsion elements of possibly infinite groups. This PR generalises those lemmas (and leaves convenience lemmas stated for finite groups), and fixes a bunch of names to use dot notation.
Renames
Function.eq_of_lt_minimalPeriod_of_iterate_eq→Function.iterate_injOn_Iio_minimalPeriodFunction.eq_iff_lt_minimalPeriod_of_iterate_eq→Function.iterate_eq_iterate_iff_of_lt_minimalPeriodisOfFinOrder_iff_coe→Submonoid.isOfFinOrder_coeorderOf_pos'→IsOfFinOrder.orderOf_pospow_eq_mod_orderOf→pow_mod_orderOf(and turned around)pow_injective_of_lt_orderOf→pow_injOn_Iio_orderOfmem_powers_iff_mem_range_order_of'→IsOfFinOrder.mem_powers_iff_mem_range_orderOforderOf_pow''→IsOfFinOrder.orderOf_poworderOf_pow_coprime→Nat.Coprime.orderOf_powzpow_eq_mod_orderOf→zpow_mod_orderOf(and turned around)exists_pow_eq_one→isOfFinOrder_of_finitepow_apply_eq_pow_mod_orderOf_cycleOf_apply→pow_mod_orderOf_cycleOf_apply
New lemmas
IsOfFinOrder.powers_eq_image_range_orderOfIsOfFinOrder.natCard_powers_le_orderOfIsOfFinOrder.finite_powersfinite_powersinfinite_powersNat.card_submonoidPowersIsOfFinOrder.mem_powers_iff_mem_zpowersIsOfFinOrder.powers_eq_zpowersIsOfFinOrder.mem_zpowers_iff_mem_range_orderOfIsOfFinOrder.exists_pow_eq_one
Other changes
- Move
decidableMemPowers/fintypePowerstoGroupTheory.Submonoid.MembershipanddecidableMemZpowers/fintypeZpowerstoGroupTheory.Subgroup.ZPowers. finEquivPowers,finEquivZpowers,powersEquivPowersandzpowersEquivZpowersnow assumeIsOfFinTorsion xinstead ofFinite G.isOfFinOrder_iff_pow_eq_onenow takes one less explicit argument.- Delete
Equiv.Perm.IsCycle.exists_pow_eq_onesince it was saying that a permutation over a finite type is torsion, but this is trivial since the group of permutation is itself finite, so we can useisOfFinOrder_of_finiteinstead.