Commit 2025-01-25 06:17 7e84e128
View on Github →feat(Algebra/Subalgebra): some lemmas about centralizers (#18764)
Let R
be a commutative ring and A
and B
two R
-algebras.
Subalgebra.centralizer_sup
: ifS
andT
are subalgebras ofA
, then the centralizer ofS ⊔ T
is the intersection of the centralizer ofS
and the centralizer ofT
.Subalgebra.centralizer_range_includeLeft_eq_center_tensorProduct
: ifB
is free as a module, then the centralizer ofA
inA ⊗ B
isC(A) ⊗ B
whereC(A)
is the center ofA
.Subalgebra.centralizer_range_includeRight_eq_center_tensorProduct
: ifA
is free as a module, then the centralizer ofB
inA ⊗ B
isA ⊗ C(B)
whereC(B)
is the center ofB
.