Commit 2025-01-25 06:17 7e84e128
View on Github →feat(Algebra/Subalgebra): some lemmas about centralizers (#18764)
Let R be a commutative ring and A and B two R-algebras.
Subalgebra.centralizer_sup: ifSandTare subalgebras ofA, then the centralizer ofS ⊔ Tis the intersection of the centralizer ofSand the centralizer ofT.Subalgebra.centralizer_range_includeLeft_eq_center_tensorProduct: ifBis free as a module, then the centralizer ofAinA ⊗ BisC(A) ⊗ BwhereC(A)is the center ofA.Subalgebra.centralizer_range_includeRight_eq_center_tensorProduct: ifAis free as a module, then the centralizer ofBinA ⊗ BisA ⊗ C(B)whereC(B)is the center ofB.