Commit 2023-12-13 19:05 8a221878
View on Github →feat(Data/Polynomial/RingDivision): improvements to Polynomial.rootMultiplicity (#8563)
Main changes:
- add
Monic.mem_nonZeroDivisorsandmem_nonZeroDivisors_of_leadingCoeffwhich states that a monic polynomial (resp. a polynomial whose leading coefficient is not zero divisor) is not a zero divisor. - add
rootMultiplicity_mul_X_sub_C_powwhich states that* (X - a) ^ nadds the root multiplicity atabyn. - change the conditions in
rootMultiplicity_X_sub_C_self,rootMultiplicity_X_sub_CandrootMultiplicity_X_sub_C_powfromIsDomaintoNontrivial. - add
rootMultiplicity_eq_natTrailingDegreewhich relatesrootMultiplicityandnatTrailingDegree, andeval_divByMonic_eq_trailingCoeff_comp. - add
le_rootMultiplicity_mulwhich is similar tole_trailingDegree_mul. - add
rootMultiplicity_mul'which slightly generalizesrootMultiplicity_mulInData/Polynomial/FieldDivision: - add
rootMultiplicity_sub_one_le_derivative_rootMultiplicity_of_ne_zerowhich slightly generalizesrootMultiplicity_sub_one_le_derivative_rootMultiplicity. - add
derivative_rootMultiplicity_of_root_of_mem_nonZeroDivisorswhich slightly generalizesderivative_rootMultiplicity_of_root. - add several theorems relating roots of iterate derivative to
rootMultiplicityIn addition: - move
eq_of_monic_of_associatedfrom RingDivision to Monic and generalize. - add
dvd_cancellemmas to NonZeroDivisors. - add
algEquivOfCompEqX: two polynomials that compose to X both ways induces an isomorphism of the polynomial algebra. - add divisibility lemmas to Polynomial/Derivative.