Commit 2024-12-23 14:21 9acfd2fc
View on Github →feat: the product formula for number fields (#20132)
In this file we prove the Product Formula for number fields: for any non-zero element x
of a number field K
, we have ∏|x|ᵥ=1
where the product runs over the equivalence classes of absoulte values of K
and the |⬝|ᵥ
are suitably normalized.
Main Results
NumberField.FinitePlace.prod_eq_inv_abs_norm
: for any non-zero elementx
of a number fieldK
, the product∏|x|ᵥ
of the absolute values ofx
associated to the finite places ofK
is equal to the inverse of the norm ofx
.NumberField.prod_abs_eq_one
: for any non-zero elementx
of a number fieldK
, we have∏|x|ᵥ=1
where the product runs over the equivalence classes of absoulte values ofK
.