Commit 2024-12-23 14:21 9acfd2fc
View on Github →feat: the product formula for number fields (#20132)
In this file we prove the Product Formula for number fields: for any non-zero element x of a number field K, we have ∏|x|ᵥ=1 where the product runs over the equivalence classes of absoulte values of K and the |⬝|ᵥ are suitably normalized.
Main Results
NumberField.FinitePlace.prod_eq_inv_abs_norm: for any non-zero elementxof a number fieldK, the product∏|x|ᵥof the absolute values ofxassociated to the finite places ofKis equal to the inverse of the norm ofx.NumberField.prod_abs_eq_one: for any non-zero elementxof a number fieldK, we have∏|x|ᵥ=1where the product runs over the equivalence classes of absoulte values ofK.