Commit 2024-11-04 14:44 9ddc9e9c
View on Github →feat(RingTheory/Algebraic[Independent]): some more results on transcendental and algebraically independent (#18433) general properties:
- make
is_transcendental_of_subsingleton
anontriviality
lemma IsAlgebraic.[of_]ringHom_of_comp_eq
,isAlgebraic_ringHom_iff_of_comp_eq
: generalize the similar result foralgHom
Transcendental.of_tower_top[_of_injective]
: negation ofIsAlgebraic.tower_top[_of_injective]
algebraicIndependent_of_finite_type'
:Type
version ofalgebraicIndependent_of_finite'
, which will be used later properties on polynomials:Transcendental.aeval_of_transcendental
,Transcendental.of_aeval
,transcendental_aeval_iff
,IsAlgebraic.of_aeval_of_transcendental
:f(r) : A
is transcendental overR
if and only ifr : A
andf : R[X]
are both transcendental overR
- move
MvPolynomial.transcendental_X
to earlier file MvPolynomial.transcendental_supported_polynomial_aeval_X[_iff]
:f(X_i)
is transcendental overR[X_j | j \in S]
if and only ifi \notin S
andf : R[X]
is transcendental overR
MvPolynomial.transcendental_polynomial_aeval_X[_iff]
:f(X_i)
is transcendental overR
if and only iff : R[X]
is transcendental overR
MvPolynomial.transcendental_supported_X[_iff]
:X_i
is transcendental overR[X_j | j \in S]
if and only ifi \notin S
MvPolynomial.algebraicIndependent_polynomial_aeval_X
:f_i(X_i)
is algebraically independent overR
if eachf_i : R[X]
is transcendental overR