Commit 2024-11-04 14:44 9ddc9e9c
View on Github →feat(RingTheory/Algebraic[Independent]): some more results on transcendental and algebraically independent (#18433) general properties:
- make
is_transcendental_of_subsingletonanontrivialitylemma IsAlgebraic.[of_]ringHom_of_comp_eq,isAlgebraic_ringHom_iff_of_comp_eq: generalize the similar result foralgHomTranscendental.of_tower_top[_of_injective]: negation ofIsAlgebraic.tower_top[_of_injective]algebraicIndependent_of_finite_type':Typeversion ofalgebraicIndependent_of_finite', which will be used later properties on polynomials:Transcendental.aeval_of_transcendental,Transcendental.of_aeval,transcendental_aeval_iff,IsAlgebraic.of_aeval_of_transcendental:f(r) : Ais transcendental overRif and only ifr : Aandf : R[X]are both transcendental overR- move
MvPolynomial.transcendental_Xto earlier file MvPolynomial.transcendental_supported_polynomial_aeval_X[_iff]:f(X_i)is transcendental overR[X_j | j \in S]if and only ifi \notin Sandf : R[X]is transcendental overRMvPolynomial.transcendental_polynomial_aeval_X[_iff]:f(X_i)is transcendental overRif and only iff : R[X]is transcendental overRMvPolynomial.transcendental_supported_X[_iff]:X_iis transcendental overR[X_j | j \in S]if and only ifi \notin SMvPolynomial.algebraicIndependent_polynomial_aeval_X:f_i(X_i)is algebraically independent overRif eachf_i : R[X]is transcendental overR