Commit 2024-06-26 11:25 a1cb4f2c
View on Github →feat(LinearAlgebra/TensorProduct/Submodule): add some linear maps induced by multiplication for submodules (#12498)
... used in the definition of linearly disjointness.
Let R be a commutative ring, S be an R-algebra (not necessarily commutative).
Let M and N be R-submodules in S.
Submodule.mulMap: the naturalR-linear mapM ⊗[R] N →ₗ[R] Sinduced by the multiplication inS, whose image isM * N(Submodule.mulMap_range).Submodule.mulMap': the natural mapM ⊗[R] N →ₗ[R] M * Ninduced by multiplication inS, which is surjective (Submodule.mulMap'_surjective).Submodule.lTensorOne,Submodule.rTensorOne: the natural isomorphism betweeni(R) ⊗[R] NandN, resp.M ⊗[R] i(R)andM, induced by multiplication inS, herei : R → Sis the structure map. They generalizeTensorProduct.lidandTensorProduct.rid, asi(R)is not necessarily isomorphic toR. Note that we use⊥ : Subalgebra R Sinstead of1 : Submodule R S, since the mapR →ₗ[R] (1 : Submodule R S)is not defined directly in mathlib yet.Submodule.mulLeftMap: ifm : ι → Mis a family of elements, then there is anR-linear map fromι →₀ NtoSwhich maps{ n_i }to the sum ofm_i * n_i.Submodule.mulRightMap: ifn : ι → Nis a family of elements, then there is anR-linear map fromι →₀ MtoSwhich maps{ m_i }to the sum ofm_i * n_i.