Commit 2024-06-26 11:25 a1cb4f2c
View on Github →feat(LinearAlgebra/TensorProduct/Submodule): add some linear maps induced by multiplication for submodules (#12498)
... used in the definition of linearly disjointness.
Let R
be a commutative ring, S
be an R
-algebra (not necessarily commutative).
Let M
and N
be R
-submodules in S
.
Submodule.mulMap
: the naturalR
-linear mapM ⊗[R] N →ₗ[R] S
induced by the multiplication inS
, whose image isM * N
(Submodule.mulMap_range
).Submodule.mulMap'
: the natural mapM ⊗[R] N →ₗ[R] M * N
induced by multiplication inS
, which is surjective (Submodule.mulMap'_surjective
).Submodule.lTensorOne
,Submodule.rTensorOne
: the natural isomorphism betweeni(R) ⊗[R] N
andN
, resp.M ⊗[R] i(R)
andM
, induced by multiplication inS
, herei : R → S
is the structure map. They generalizeTensorProduct.lid
andTensorProduct.rid
, asi(R)
is not necessarily isomorphic toR
. Note that we use⊥ : Subalgebra R S
instead of1 : Submodule R S
, since the mapR →ₗ[R] (1 : Submodule R S)
is not defined directly in mathlib yet.Submodule.mulLeftMap
: ifm : ι → M
is a family of elements, then there is anR
-linear map fromι →₀ N
toS
which maps{ n_i }
to the sum ofm_i * n_i
.Submodule.mulRightMap
: ifn : ι → N
is a family of elements, then there is anR
-linear map fromι →₀ M
toS
which maps{ m_i }
to the sum ofm_i * n_i
.