Commit 2024-06-05 00:51 ab26390e
View on Github →feat(Mathlib.RingTheory.TensorProduct.MvPolynomial) : tensor product of a (multivariate) polynomial ring (#12293)
Let Semiring R, Algebra R S and Module R N.
MvPolynomial.rTensorgives the linear equivalenceMvPolynomial σ S ⊗[R] N ≃ₗ[R] (σ →₀ ℕ) →₀ (S ⊗[R] N)characterized, forp : MvPolynomial σ S,n : Nandd : σ →₀ ℕ, byrTensor (p ⊗ₜ[R] n) d = (coeff d p) ⊗ₜ[R] nMvPolynomial.scalarRTensorgives the linear equivalenceMvPolynomial σ R ⊗[R] N ≃ₗ[R] (σ →₀ ℕ) →₀ Nsuch thatMvPolynomial.scalarRTensor (p ⊗ₜ[R] n) d = coeff d p • nforp : MvPolynomial σ R,n : Nandd : σ →₀ ℕ, byMvPolynomial.rTensorAlgHom, the algebra morphism from the tensor product of a polynomial algebra by an algebra to a polynomial algebraMvPolynomial.rTensorAlgEquiv,MvPolynomial.scalarRTensorAlgEquiv, the tensor product of a polynomial algebra by an algebra is algebraically equivalent to a polynomial algebra