Commit 2024-06-05 00:51 ab26390e
View on Github →feat(Mathlib.RingTheory.TensorProduct.MvPolynomial) : tensor product of a (multivariate) polynomial ring (#12293)
Let Semiring R
, Algebra R S
and Module R N
.
MvPolynomial.rTensor
gives the linear equivalenceMvPolynomial σ S ⊗[R] N ≃ₗ[R] (σ →₀ ℕ) →₀ (S ⊗[R] N)
characterized, forp : MvPolynomial σ S
,n : N
andd : σ →₀ ℕ
, byrTensor (p ⊗ₜ[R] n) d = (coeff d p) ⊗ₜ[R] n
MvPolynomial.scalarRTensor
gives the linear equivalenceMvPolynomial σ R ⊗[R] N ≃ₗ[R] (σ →₀ ℕ) →₀ N
such thatMvPolynomial.scalarRTensor (p ⊗ₜ[R] n) d = coeff d p • n
forp : MvPolynomial σ R
,n : N
andd : σ →₀ ℕ
, byMvPolynomial.rTensorAlgHom
, the algebra morphism from the tensor product of a polynomial algebra by an algebra to a polynomial algebraMvPolynomial.rTensorAlgEquiv
,MvPolynomial.scalarRTensorAlgEquiv
, the tensor product of a polynomial algebra by an algebra is algebraically equivalent to a polynomial algebra