Commit 2024-10-17 19:56 b2dddd4c
View on Github →feat: sum of iterated derivatives (#16886)
This introduces Polynomial.sumIDeriv, the sum of the iterated derivatives of a polynomial, to be used in particular in the proof of the Lindemann-Weierstrass theorem (see #6718).
Included are:
Polynomial.sumIDeriv_apply,Polynomial.sumIDeriv_apply_of_lt,Polynomial.sumIDeriv_apply_of_le:Polynomial.sumIDerivexpressed as a sumPolynomial.sumIDeriv_C,Polynomial.sumIDeriv_X:Polynomial.sumIDerivapplied to simple polynomialsPolynomial.sumIDeriv_map:Polynomial.sumIDerivcommutes withPolynomial.mapPolynomial.sumIDeriv_derivative:Polynomial.sumIDerivcommutes withPolynomial.derivativePolynomial.sumIDeriv_eq_self_add:sumIDeriv p = p + sumIDeriv (derivative p)Polynomial.exists_iterate_derivative_eq_factorial_smul: thek'th iterated derivative of a polynomial has a common factork!Polynomial.aeval_iterate_derivative_of_lt,Polynomial.aeval_iterate_derivative_self,Polynomial.aeval_iterate_derivative_of_ge: applyingPolynomial.aevalto iterated derivativesPolynomial.aeval_sumIDeriv,Polynomial.aeval_sumIDeriv_of_pos: applyingPolynomial.aevaltoPolynomial.sumIDeriv