Commit 2025-10-21 12:12 c3836ff4

View on Github →

feat(CategoryTheory/Limits/Opposites) : add opposites of coforks and forks (#30200) This PR adds missing definitions surrounding op and unop of coforks and forks. In CategoryTheory/Limits/Shapes/Equalizers.lean:

  • CoforkOfπ.ext : Adds an extensionality def corresponding to the existing ForkOfι.ext In CategoryTheory/Limits/Opposites.lean:
  • parallelPairOpIso: the dual behavior for parallelPair (similar to spanOp, cospanOp)
  • pullbackIsoOpPushout: the dual version of the existing pullbackIsoUnopPushout
  • Cofork.unop, Cofork.op, Fork.unop, Fork.op: define unop and op of Cofork and Fork
  • isColimitEquivIsLimitOp: A cofork in C is a colimit if and only if its opposite is limit in Cᵒᵖ
  • isColimitOfπEquivIsLimitOp: Cofork.ofπ π is colimit in C if and only if Fork.ofι π.op is limit in Cᵒᵖ
  • isColimitCoforkPushoutEquivIsColimitForkOpPullback: Cofork.ofπ f pullback.condition is colimit in C if and only if Fork.ofι f.op pushout.condition is limit in Cᵒᵖ. Relevant dual statements have also been added.

Estimated changes