Commit 2024-03-07 16:36 c5eaf25c
View on Github →feat: sums over residue classes (#11189)
This adds a file Analysis.SumOverResidueClass
, whose main result is
/-- A decreasing sequence of real numbers is summable on a residue class
if and only if it is summable. -/
lemma summable_indicator_mod_iff {m : ℕ} [NeZero m] {f : ℕ → ℝ} (hf : Antitone f) (k : ZMod m) :
Summable ({n : ℕ | (n : ZMod m) = k}.indicator f) ↔ Summable f
We then use this to show that the harmonic series still diverges when restricted to a residue class. This is needed for the proof that the abscissa of absolute convergence of a Dirichlet L-series is 1.