Commit 2024-12-20 13:13 c800d7a3
View on Github →feat(Data/Nat/Nth): nth_add_one
(#18836)
Add the lemma
lemma nth_add_one {n : ℕ} (h0 : ¬p 0) (h : nth p n ≠ 0) :
nth (fun i ↦ p (i + 1)) n + 1 = nth p n := by
and its variant
lemma nth_add_one_eq_sub {n : ℕ} (h0 : ¬p 0) (h : nth p n ≠ 0) :
nth (fun i ↦ p (i + 1)) n = nth p n - 1 := by
Feel free to golf; it seems like there ought to be a much shorter proof, possibly following a different approach.