Commit 2024-01-06 18:06 c99fdac2
View on Github →feat(GroupTheory/Perm/DomMulAct) : Subgroup of Equiv.Perm α preserving a function p : α → ι (#9342)
Subgroup of Equiv.Perm α preserving a function
Let α and ι by types and let p : α → ι
DomMulAct.mem_stabilizer_iffproves that the stabilizer ofp : α → ιin(Equiv.Perm α)ᵈᵐᵃis the set ofg : (Equiv.Perm α)ᵈᵐᵃsuch thatp ∘ (mk.symm g) = p. The natural equivalence fromstabilizer (Perm α)ᵈᵐᵃ pto{ g : Perm α // p ∘ g = p }can be obtained assubtypeEquiv mk.symm (fun _ => mem_stabilizer_iff)DomMulAct.stabilizerMulEquivis theMulEquivfrom the MulOpposite of this stabilizer to the product, fori : ι, ofEquiv.Perm {a // p a = i}.- Under
Fintype αandFintype ι,DomMulAct.stabilizer_card pcomputes the cardinality of the type of permutations preservingp:Fintype.card {f : Perm α // p ∘ f = p} = ∏ i , (Fintype.card ({a // p a = i})).factorialCo-Authored by : Junyan Xu junyanxu.math@gmail.com