Commit 2024-02-06 18:38 d172b397
View on Github →feat(FieldTheory/PurelyInseparable): definition and basic results of purely inseparable extensions (#9488) Main defintions:
IsPurelyInseparable
: typeclass for purely inseparable field extension: an algebraic extensionE / F
is purely inseparable if and only if the minimal polynomial of every element ofE ∖ F
is not separable. Main results (not exhaustive):isPurelyInseparable_iff_mem_pow
: a field extensionE / F
of exponential characteristicq
is purely inseparable if and only if for every elementx
ofE
, there exists a natural numbern
such thatx ^ (q ^ n)
is contained inF
.IsPurelyInseparable.trans
: ifE / F
andK / E
are both purely inseparable extensions, thenK / F
is also purely inseparable.isPurelyInseparable_iff_natSepDegree_eq_one
:E / F
is purely inseparable if and only if for every elementx
ofE
, its minimal polynomial has separable degree one.isPurelyInseparable_iff_minpoly_eq_X_pow_sub_C
: a field extensionE / F
of exponential characteristicq
is purely inseparable if and only if for every elementx
ofE
, the minimal polynomial ofx
overF
is of formX ^ (q ^ n) - y
for some natural numbern
and some elementy
ofF
.isPurelyInseparable_iff_minpoly_eq_X_sub_C_pow
: a field extensionE / F
of exponential characteristicq
is purely inseparable if and only if for every elementx
ofE
, the minimal polynomial ofx
overF
is of form(X - x) ^ (q ^ n)
for some natural numbern
.isPurelyInseparable_iff_finSepDegree_eq_one
: an algebraic extension is purely inseparable if and only if it has (finite) separable degree one. TODO: remove the algebraic assumption. (will be in later PR)IsPurelyInseparable.normal
: a purely inseparable extension is normal.separableClosure.isPurelyInseparable
: ifE / F
is algebraic, thenE
is purely inseparable over the (relative) separable closure ofE / F
.IsPurelyInseparable.injective_comp_algebraMap
: ifE / F
is purely inseparable, then for any reduced ringL
, the map(E →+* L) → (F →+* L)
induced byalgebraMap F E
is injective. In other words, a purely inseparable field extension is an epimorphism in the category of fields.isPurelyInseparable_adjoin_iff_mem_pow
: ifF
is of exponential characteristicq
, thenF(S) / F
is a purely inseparable extension if and only if for anyx ∈ S
,x ^ (q ^ n)
is contained inF
for somen : ℕ
.Field.finSepDegree_eq
: ifE / F
is algebraic, then theField.finSepDegree F E
is equal toField.sepDegree F E
as a natural number. This means that the cardinality ofField.Emb F E
and the degree of(separableClosure F E) / F
are both finite or infinite, and when they are finite, they coincide. TODO: (will be in later PR)IsPurelyInseparable.of_injective_comp_algebraMap
: ifL
is an algebraically closed field containingE
, such that the map(E →+* L) → (F →+* L)
induced byalgebraMap F E
is injective, thenE / F
is purely inseparable. In other words, epimorphisms in the category of fields must be purely inseparable extensions. Need to use the fact thatEmb F E
is infintie whenE / F
is (purely) transcendental.- Prove that the (infinite) inseparable degree are multiplicative; linearly disjoint argument is needed.