Commit 2024-02-06 18:38 d172b397
View on Github →feat(FieldTheory/PurelyInseparable): definition and basic results of purely inseparable extensions (#9488) Main defintions:
IsPurelyInseparable: typeclass for purely inseparable field extension: an algebraic extensionE / Fis purely inseparable if and only if the minimal polynomial of every element ofE ∖ Fis not separable. Main results (not exhaustive):isPurelyInseparable_iff_mem_pow: a field extensionE / Fof exponential characteristicqis purely inseparable if and only if for every elementxofE, there exists a natural numbernsuch thatx ^ (q ^ n)is contained inF.IsPurelyInseparable.trans: ifE / FandK / Eare both purely inseparable extensions, thenK / Fis also purely inseparable.isPurelyInseparable_iff_natSepDegree_eq_one:E / Fis purely inseparable if and only if for every elementxofE, its minimal polynomial has separable degree one.isPurelyInseparable_iff_minpoly_eq_X_pow_sub_C: a field extensionE / Fof exponential characteristicqis purely inseparable if and only if for every elementxofE, the minimal polynomial ofxoverFis of formX ^ (q ^ n) - yfor some natural numbernand some elementyofF.isPurelyInseparable_iff_minpoly_eq_X_sub_C_pow: a field extensionE / Fof exponential characteristicqis purely inseparable if and only if for every elementxofE, the minimal polynomial ofxoverFis of form(X - x) ^ (q ^ n)for some natural numbern.isPurelyInseparable_iff_finSepDegree_eq_one: an algebraic extension is purely inseparable if and only if it has (finite) separable degree one. TODO: remove the algebraic assumption. (will be in later PR)IsPurelyInseparable.normal: a purely inseparable extension is normal.separableClosure.isPurelyInseparable: ifE / Fis algebraic, thenEis purely inseparable over the (relative) separable closure ofE / F.IsPurelyInseparable.injective_comp_algebraMap: ifE / Fis purely inseparable, then for any reduced ringL, the map(E →+* L) → (F →+* L)induced byalgebraMap F Eis injective. In other words, a purely inseparable field extension is an epimorphism in the category of fields.isPurelyInseparable_adjoin_iff_mem_pow: ifFis of exponential characteristicq, thenF(S) / Fis a purely inseparable extension if and only if for anyx ∈ S,x ^ (q ^ n)is contained inFfor somen : ℕ.Field.finSepDegree_eq: ifE / Fis algebraic, then theField.finSepDegree F Eis equal toField.sepDegree F Eas a natural number. This means that the cardinality ofField.Emb F Eand the degree of(separableClosure F E) / Fare both finite or infinite, and when they are finite, they coincide. TODO: (will be in later PR)IsPurelyInseparable.of_injective_comp_algebraMap: ifLis an algebraically closed field containingE, such that the map(E →+* L) → (F →+* L)induced byalgebraMap F Eis injective, thenE / Fis purely inseparable. In other words, epimorphisms in the category of fields must be purely inseparable extensions. Need to use the fact thatEmb F Eis infintie whenE / Fis (purely) transcendental.- Prove that the (infinite) inseparable degree are multiplicative; linearly disjoint argument is needed.