Commit 2024-03-12 11:06 d4243447
View on Github →feat(FieldTheory/IsPerfectClosure): predicate IsPerfectClosure (#8696)
Main definitions
pNilradical: thep-nilradical of a ring is an ideal consists of elementsxsuch thatx ^ p ^ n = 0for somen(mem_pNilradical). It is equal to the nilradical ifp > 1(pNilradical_eq_nilradical), otherwise it is equal to zero (pNilradical_eq_bot).IsPRadical: a ring homomorphismi : K →+* Lof characteristicprings is calledp-radical, if or any elementxofLthere isn : ℕsuch thatx ^ (p ^ n)is contained inK, and the kernel ofiis contained in thep-nilradical ofK. A generalization of purely inseparable extension for fields.IsPerfectClosure: a ring homomorphismi : K →+* Lof characteristicprings makesLa perfect closure ofK, ifLis perfect, andiisp-radical.PerfectRing.lift: if ap-radical ring homomorphismK →+* Lis given,Mis a perfect ring, then any ring homomorphismK →+* Mcan be lifted toL →+* M. This is similar toIsAlgClosed.liftandIsSepClosed.lift.PerfectRing.liftEquiv:K →+* Mis one-to-one correspondence toL →+* M, given byPerfectRing.lift. This is a generalization toPerfectClosure.lift.IsPerfectClosure.equiv: perfect closures of a ring are isomorphic. Main resultsIsPRadical.trans: composition ofp-radical ring homomorphisms is alsop-radical.PerfectClosure.isPerfectClosure: the absolute perfect closurePerfectClosureis a perfect closure.IsPRadical.isPurelyInseparable,IsPurelyInseparable.isPRadical:p-radical and purely inseparable are equivalent for fields.perfectClosure.isPerfectClosure: the (relative) perfect closureperfectClosureis a perfect closure.