Commit 2025-05-22 00:24 f13eeded
View on Github →feat(Analysis/SpecialFunctions): extend tendsto_one_plus_div_rpow_exp
(#23804)
This PR
- Proves 12 theorems (they are stated separately because of differences in
rexp
vscexp
andpow
vsrpow
):- The limit of
x * log (1 + t/x + o(1/x))
asx → ∞
ist
fort : ℂ
orℝ
andx : ℝ
orℕ
. - The limit of
(1 + t/x + o(1/x)) ^ x
asx → ∞
isexp t
fort : ℂ
orℝ
andx : ℝ
orℕ
. - The limit of
(1 + t/x) ^ x
asx → ∞
isexp t
fort : ℂ
orℝ
andx : ℝ
orℕ
. - (Note: the last row of theorems for
t : ℝ
already exist and are now replaced)
- The limit of
- Renames
plus
toadd
in affected theorems The little-o theorem fort : ℂ
is needed for CLT. Moves: - tendsto_one_plus_div_rpow_exp -> Real.tendsto_one_add_div_rpow_exp
- tendsto_one_plus_div_pow_exp -> Real.tendsto_one_add_div_pow_exp
- tendsto_integral_mul_one_plus_inv_smul_sq_pow -> tendsto_integral_mul_one_add_inv_smul_sq_pow