Commit 2023-11-10 17:28 f3ca3380
View on Github →feat(LiminfLimsup, LpSeminorm): add lemmas/golf (#8300)
- Add
blimsup_eq_limsup
andbliminf_eq_liminf
- Generalize
limsup_nat_add
andliminf_nat_add
to aConditionallyCompleteLattice
. - Add
Filter.HasBasis.blimsup_eq_iInf_iSup
. - Add
limsup_sup_filter
,liminf_sup_filter
,blimsup_sup_not
,bliminf_inf_not
,blimsup_not_sup
,bliminf_not_inf
,limsup_piecewise
, andliminf_piecewise
. - Add
essSup_piecewise
. - Assume that the codomain is
ℝ≥0∞
inessSup_indicator_eq_essSup_restrict
. This allows us to drop assumptions0 ≤ᵐ[_] f
andμ s ≠ 0
. - Upgrade inequality to an equality in
snormEssSup_piecewise_le
(nowsnormEssSup_piecewise
) andsnorm_top_piecewise_le
(nowsnorm_top_piecewise
). - Use new lemmas to golf some proofs.