Commit 2023-11-10 17:28 f3ca3380
View on Github →feat(LiminfLimsup, LpSeminorm): add lemmas/golf (#8300)
- Add
blimsup_eq_limsupandbliminf_eq_liminf - Generalize
limsup_nat_addandliminf_nat_addto aConditionallyCompleteLattice. - Add
Filter.HasBasis.blimsup_eq_iInf_iSup. - Add
limsup_sup_filter,liminf_sup_filter,blimsup_sup_not,bliminf_inf_not,blimsup_not_sup,bliminf_not_inf,limsup_piecewise, andliminf_piecewise. - Add
essSup_piecewise. - Assume that the codomain is
ℝ≥0∞inessSup_indicator_eq_essSup_restrict. This allows us to drop assumptions0 ≤ᵐ[_] fandμ s ≠ 0. - Upgrade inequality to an equality in
snormEssSup_piecewise_le(nowsnormEssSup_piecewise) andsnorm_top_piecewise_le(nowsnorm_top_piecewise). - Use new lemmas to golf some proofs.