Commit 2024-02-01 09:38 f8b99c79
View on Github βfeat(Analysis.Calculus.FDeriv.Analytic + Analysis.Complex.TaylorSeries): Taylor series of holomorphic functions (#10087) See here on Zulip. This adds some general lemmas due to Junyan Xu, culminating in
theorem HasFPowerSeriesOnBall.hasSum_iteratedFDeriv {π : Type*} [NontriviallyNormedField π] {E : Type*}
[ NormedAddCommGroup E] [NormedSpace π E] {F : Type*} [NormedAddCommGroup F]
[NormedSpace π F] {p : FormalMultilinearSeries π E F} {f : E β F} {x : E} {r : ββ₯0β}
(h : HasFPowerSeriesOnBall f p x r) [CompleteSpace F] [CharZero π] {y : E} (hy : y β EMetric.ball 0 r) :+1:
HasSum (fun n β¦ (n ! : π)β»ΒΉβ’ (iteratedFDeriv π n f x) fun x β¦ y) (f (x + y))
and uses this to show that the Taylor series of a function that is complex differentiable on an open ball in β converges there to the function; similarly for functions that are holomorphic on all of β:
lemma Complex.hasSum_taylorSeries_on_ball {E : Type*} [NormedAddCommGroup E] [NormedSpace β E]
[CompleteSpace E] β¦f : β β Eβ¦ β¦c : ββ¦ β¦r : NNRealβ¦ (hf : DifferentiableOn β f (Metric.ball c βr)) β¦z : ββ¦
(hz : z β Metric.ball c βr) :
HasSum (fun n β¦ (n ! : β)β»ΒΉ β’ (z - c) ^ n β’ iteratedDeriv n f c) (f z)
lemma Complex.taylorSeries_eq_on_ball {E : Type*} [NormedAddCommGroup E] [NormedSpace β E]
[CompleteSpace E] β¦f : β β Eβ¦ β¦c : ββ¦ β¦r : NNRealβ¦ (hf : DifferentiableOn β f (Metric.ball c βr)) β¦z : ββ¦
(hz : z β Metric.ball c βr) :
β' (n : β), (n ! : β)β»ΒΉ β’ (z - c) ^ n β’ iteratedDeriv n f c = f z
lemma Complex.taylorSeries_eq_on_ball' β¦c : ββ¦ β¦r : NNRealβ¦ β¦z : ββ¦ (hz : z β Metric.ball c βr) {f : β β β}
(hf : DifferentiableOn β f (Metric.ball c βr)) :
β' (n : β), (n ! : β)β»ΒΉ * iteratedDeriv n f c * (z - c) ^ n = f z
and similar lemmas for EMetric.ball
s and entire functions.