Commit 2024-10-21 16:43 ff8e6e85
View on Github →feat: semisimple rings are Artinian (#17557)
The main result IsSemisimpleModule.finite_tfae
shows that for a semisimple module, Module.Finite R M ↔ IsNoetherian R M ↔ IsArtinian R M ↔ IsFiniteLength R M ↔
direct sum decomposition into finitely many simple modules (F25 in Chapter 28 of Lorenz's Algebra II). The instance from IsSemisimpleModule + Module.Finite to IsNoetherian is proven before and used in the proof, while the instance to IsArtinian is added after the proof. As a consequence, semisimple rings are Artinian.
Also add easy lemmas isNoetherian_range
, LinearEquiv.isNoetherian_iff
, isNoetherian_sup
, isNoetherian_iSup
(and Artinian counterparts) and IsSemisimpleModule.exists_setIndependent_sSup_simples_eq_top
.